Indian Statistical Institute, Bangalore M.Math II year 2018-2019 Semester II : Operator Theory

Mid-Sem Exam		Date:	23.02.2019
Maximum Marks:	80 Du	uration:	3 hours

Note: Any score above 80 will be taken as 80. State the results very clearly that you are using in your answers.

- 1. (15) . Let \mathcal{H} be a Hilbert space of dimension greater than 1. Show that the Banach space $\mathcal{B}(\mathcal{H})$ of bounded operators on \mathcal{H} , with operator norm, is not a Hilbert space.
- 2. (15) If $T \in \mathcal{B}(\mathcal{H})$, show that T is compact iff |T| is compact.
- 3. (5+10+15) Let H be a complex Hilbert space having an orthonormal basis e_1, e_2, e_3, \ldots Let T be an operator satisfying $Te_n = a_n e_{n+1}$ for every $n = 1, 2, \ldots$
 - (a) State the conditions under which $T \in \mathcal{B}_0(\mathcal{H})$.
 - (b) If $T \in \mathcal{B}(\mathcal{H})$, find ||T|| and show that the spectrum of T is rotation invariant.
 - (c) If $a_n = 1$ for all n, then for any given polynomial p, find the spectrum of p(T) in terms of the roots of p.
- 4. (5+10+10) Let $f \in \mathcal{C}(\mathbb{T})$ be given by $f(z) = (3+z+\overline{z})z$. Let T_f be the Toeplitz operator given by f.
 - (a) Show that T_f is not compact.
 - (b) Show that T_f is a Fredholm operator and find its index.
 - (c) Find the spectrum of T_f .